Click to visit Home page

Google Adsense Privacy Policy

Contact Webmaster

Mercury

Venus 

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Direction, Altitude & Visibility Duration of Venus after Sunset, May - December 2021:

Look-up Tables

Horizon Diagrams

2021-22 Evening Apparition Data

Venus Conjunctions with other Planets, 2021

Moon nr Venus Dates, 2021-22

2020-21 Morning Apparition

Jump to:

2021:

March

April

May

June

July

August

September

October

November

December

2022:

January

Star chart showing the paths of Venus, Mercury and Mars through the zodiac constellations from May to August 2021 (click for full-size star map) (Copyright Martin J Powell 2021)

The paths of Venus, Mercury and Mars through the zodiac constellations during the earlier part of Venus' evening apparition in 2021-22 (click on the thumbnail for the full-size image). The later part of the apparition appears in the star chart below. Planet positions are plotted for 0 hrs Universal Time (UT) at 5-day intervals. For Venus, apparition data for the dates shown in bright white (at 10-day intervals) are included in the table below. A Southern hemisphere version of the chart (South up) is available here.

Both evening and morning apparitions of Mercury are included. Wherever a planet is too close to the Sun to view, the path is shown by a dashed line (- -). Hence Mercury's evening apparition draws to a close in late May 2021. It then becomes lost from view in the evening twilight as it heads towards inferior conjunction with the Sun. The planet re-emerges in the dawn twilight in late June for a morning apparition which lasts through to mid-July. Because Mercury is mostly seen in twilight, many of the fainter stars shown in the planet's vicinity may not be visible when the planet itself is observed.

The positions at which Mercury attains greatest elongation from the Sun are indicated by the letters 'GE', with the solar elongation angle in brackets; it is Eastern (E) in the evening and Western (W) in the morning (the elongation of Venus is Easterly throughout the chart coverage). The position at which Venus attains greatest brilliancy for this apparition (apparent magnitude = -4.7) is shown by the letters 'GB'. The May evening apparition of Mercury favours Northern hemisphere observers whilst the morning apparition of late June to July favours no particular hemisphere.

Planetary conjunctions of Venus with Mercury and Venus with Mars take place on May 29th and July 13th respectively, indicated on the chart by the symbol Conjunction symbol (for more details see the planetary conjunctions section below).

The faintest stars shown on the chart have an apparent magnitude of about +4.8. Printer-friendly versions of this chart are available for Northern and Southern hemisphere views. Click here to see a 'clean' star map of the area (i.e. without planet paths); a printer-friendly version can be seen here. Astronomical co-ordinates of Right Ascension (longitude, measured Eastwards in hrs:mins) and Declination (latitude, measured in degrees North or South of the celestial equator) are marked around the border of the chart.

The two star names shown in yellow-green were officially adopted by the International Astronomical Union (IAU) in 2017.

The Venus Evening Apparition of 2021-22

by Martin J. Powell

Following superior conjunction on March 26th 2021 (when it passes directly behind the Sun in central Southern Pisces, the Fishes), Venus cuts across the North-western corner of the constellation of Cetus, the Whale (or Sea Monster) for a 61-hour period from 0329 UT on March 27th, re-entering Pisces through its Southern border on the following day. The planet is moving in a North-easterly direction against the background stars (direct or prograde motion) at this time.

A distant Venus imaged by Manos Kardasis on October 13th 2019 (Image: ALPO-Japan/Manos Kardasis)

A Near-Fully Illuminated Venus imaged by Manos Kardasis (Athens, Greece) on October 13th 2019 when the planet was emerging into the dusk sky for the 2019-20 evening apparition. Kardasis used a Celestron 14-inch SCT telescope fitted with a CMOS camera (Image: ALPO-Japan / Manos Kardasis)

2 0 2 1  April

Venus is unobservable through most of the month of April. The planet enters Aries, the Ram, on April 14th, passing 11.5 South of its brightest star Hamal (Greek lower-case letter 'alpha' Ari or Alpha Arietis, mag. +2.0) on April 18th.

On April 22nd Venus passes 15' (15 arcminutes, where 1 arcminute = 1/60 of a degree) to the South of the planet Uranus (apparent magnitude +5.9) in a planetary conjunction which is too close to the Sun to observe. Four days later the planet Mercury (mag. -1.5), heading into the dusk sky for its second evening apparition of 2021, passes 1.3 to the North of Venus in a conjunction which is also unobservable, taking place just 8 away from the Sun. The latter two planets will meet again in late May.

Venus' 2021-22 apparition as an 'Evening Star' commences as the planet emerges in the dusk sky around late April. Equatorial and Northern Tropical latitudes are the first to see it, low down in the Western sky shortly after sunset. Latitudes further North begin to detect the planet from around late April (at 30 North), early May (50 North) and mid-May (60 North). Southern latitudes detect the planet from around late April (at 15 South), early May (25 South) and mid-May (45 South).

Venus is slow to emerge from the twilight glow, taking several weeks to gain a significant altitude (angle above the horizon) after sunset. As the apparition commences Venus is positioned at a distant 1.7025 Astronomical Units (AU) from the Earth (254.7 million kms or 158.2 million statute miles), a distance which will continually reduce over the next eight months.

2 0 2 1  May

Venus enters the constellation of Taurus, the Bull, on May 3rd, reaching a solar elongation (angle from the Sun) of 10 East on the same day. Higher Northern latitudes begin to see the planet from around this time, only a few degrees above the North-western horizon at dusk. From these latitudes Venus will set in twilight for much of the apparition, only beginning to set in darkness from late Autumn.

At this early stage of the apparition, when seen through a telescope, the planet shows a broad gibbous phase, around 98% illuminated, shining at magnitude -3.9 and measuring only around 10" across (i.e. 10 arcseconds, where 1" = 1/60th of an arcminute or 1/3600 of a degree). Its low altitude, great distance from the Earth and small apparent size make it a difficult object to observe telescopically, with no detail being visible in its clouds. Venus is moving along the ecliptic (the apparent path of the Sun, Moon and planets) at a steady rate of 1.2 per day and is pulling away from the Sun at about 0.3 per day.

Preceding Venus into the evening sky in late April was the planet Mercury. From early May the two planets begin the first of three paired apparitions which take place during 2021 (a paired apparition being when the two planets are visible together for a prolonged period of time, either in the morning sky or the evening sky). At midnight UT on May 4th, Mercury - also in Taurus - is positioned 6.4 to the ENE of Venus and is speeding away Eastwards from it a rate of about 0.6 per day. Mercury (mag. -0.4) is 8.3 to the ENE of Venus on May 8th.

Also on May 8th, Venus passes about 4 South of the open star cluster known as the Pleiades (Messier 45 or M45). Also known by the name The Seven Sisters, they are probably the best-known star cluster in the night sky. Under dark skies the seven brightest stars in the group can be seen with the naked-eye, however by this time of year their annual observable cycle has ended and they are too close to the Sun to see.

Venus crosses to the North of the ecliptic on May 9th. At around 2230 UT on May 12th the waxing crescent Moon passes in front of Venus, blocking it from view, in an event known as a lunar occultation. It is partly visible in twilight - just before Moonset - from a narrow strip of Pacific Ocean just to the West of South America. Details of the timings and track of visibility can be seen by following the link in the Moon near Venus Dates section below.

Mercury, having brightened to magnitude -0.0, is positioned 9.1 to the ENE of Venus at midnight UT on May 12th; the pair are joined by the waxing crescent Moon between this day and the 14th. From mid-May Mercury begins to turn more Southward and its motion begins to slow, the result being that Venus slowly closes in on Mercury over the next two weeks. Mercury reaches its greatest elongation on May 17th, positioned 22 East of the Sun in North-eastern Taurus, at which time Venus is 8.8 away to its WSW. This Mercurian apparition is particularly favourable to Northern hemisphere observers.

From May 14th to 17th Venus passes several degrees to the North of the large V-shaped star cluster known as the Hyades. It comprises around 400 stars spread over an exceptionally large area of about 5 of the sky. At the South-eastern corner of the 'V', marking the 'eye' of the Bull, is Taurus' brightest star Aldebaran (Greek lower-case letter 'alpha' Tauri, mag. +0.9). But just like the Pleiades, the Hyades have now reached the end of their observable period as they sink into the dusk twilight.

Venus enters Chart 1 coverage on May 20th, with Mercury positioned 7.7 to its ENE, having faded to magnitude +0.9. Venus reaches 15 East of the Sun on May 23rd, by which time observers at Southern Tropical and mid-Southern latitudes have begun to detect the planet, low down in the WNW at dusk.

Date

Constellation

Apparent

Magnitude

Apparent

Diameter

(arcsecs)

View from

Earth

(0h UT)

(North up)

Distance (AU)*

Solar

Elongation

Illuminated

Phase

from Earth

from Sun

2021

May 22

Astrological symbol of Taurus

Tau

-3.9

10".1

View of Venus from Earth on May 22nd 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.6506

0.7193

14E

97%

Jun 1

Astrological symbol of Taurus

Tau

-3.9

10".3

View of Venus from Earth on June 1st 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.6192

0.7187

17E

95%

Jun 11

Astrological symbol of Gemini

Gem

-3.9

10".5

View of Venus from Earth on June 11th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.5824

0.7184

20E

94%

Jun 21

Astrological symbol of Gemini

Gem

-3.9

10".8

View of Venus from Earth on June 21st 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.5399

0.7185

22E

92%

Jul 1

Astrological symbol of Cancer

Cnc

-3.9

11".2

View of Venus from Earth on July 1st 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.4924

0.7190

25E

90%

Jul 11

Astrological symbol of Cancer

Cnc

-3.9

11".6

View of Venus from Earth on July 11th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.4401

0.7199

28E

88%

Jul 21

Astrological symbol of Leo

Leo

-3.9

12".1

View of Venus from Earth on July 21st 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.3833

0.7210

30E

85%

Jul 31

Astrological symbol of Leo

Leo

-3.9

12".6

View of Venus from Earth on July 31st 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.3227

0.7223

32E

82%

Aug 10

Astrological symbol of Leo

Leo

-4.0

13".5

View of Venus from Earth on August 10th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.2587

0.7236

35E

80%

Aug 20

Astrological symbol for Virgo

Vir

-4.0

14".0

View of Venus from Earth on August 20th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.1917

0.7250

37E

77%

Aug 30

Astrological symbol for Virgo

Vir

-4.0

14".9

View of Venus from Earth on August 30th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.1222

0.7262

39E

74%

Sep 9

Astrological symbol for Virgo

Vir

-4.1

15".9

View of Venus from Earth on September 9th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

1.0506

0.7271

41E

70%

Sep 19

Astrological symbol for Libra

Lib

-4.1

17".1

View of Venus from Earth on September 19th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.9773

0.7278

43E

67%

Sep 29

Astrological symbol for Libra

Lib

-4.2

18".5

View of Venus from Earth on September 29th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.9026

0.7282

44E

63%

Oct 9

Astrological symbol for Scorpius

Sco

-4.2

20".2

View of Venus from Earth on October 9th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.8269

0.7281

46E

59%

Oct 19

Astrological symbol for Scorpius

Sco

-4.3

22".2

View of Venus from Earth on October 19th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.7506

0.7277

46E

55%

Oct 29

 

Oph

-4.4

24".8

View of Venus from Earth on October 29th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.6740

0.7270

47E

50%

Nov 8

Astrological symbol for Sagittarius

Sgr

-4.5

27".9

View of Venus from Earth on November 8th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.5979

0.7259

46E

44%

Nov 18

Astrological symbol for Sagittarius

Sgr

-4.6

31".9

View of Venus from Earth on November 18th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.5230

0.7247

45E

38%

Nov 28

Astrological symbol for Sagittarius

Sgr

-4.6

37".0

View of Venus from Earth on November 28th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.4510

0.7234

43E

31%

Dec 8

Astrological symbol for Sagittarius

Sgr

-4.7

43".4

View of Venus from Earth on December 8th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.3841

0.7220

38E

23%

Dec 18

Astrological symbol for Sagittarius

Sgr

-4.6

51".1

View of Venus from Earth on December 18th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.3263

0.7207

30E

14%

Dec 28

Astrological symbol for Sagittarius

Sgr

-4.4

58".7

View of Venus from Earth on December 28th 2021 at 0h UT (Image modified from NASA's Solar System Simulator v4)

0.2843

0.7197

19E

5%

* 1 AU (Astronomical Unit) = 149,597,870 kms (92,955,806 statute miles)

Table of selected data relating to the evening apparition of Venus during 2021. The data is listed at 10-day intervals, corresponding with the dates shown in bright white on the star charts 1 and 2. The data for the table was obtained from the software 'Redshift 5', 'MegaStar'  and 'SkyGazer Ephemeris' . The Venusian disk images were derived from NASA's Solar System Simulator.

Mercury is positioned 5.1 to the ENE of Venus at midnight UT on May 24th and 2.4 to the East of it on May 27th. Also on May 27th, Venus passes 4.6 South of the star Elnath (Greek lower-case letter 'beta' Tau or Beta Tauri, mag. +1.6), which is located at the tip of the Bull's Northern horn. The name was standardized by the International Astronomical Union (IAU) in 2016, previous versions of the name being spelled Al Nath, El Nath or simply Nath. The star also neatly completes the six-sided figure comprising the stars of Auriga, the Charioteer, located to the North-east of Taurus.

At 0533 UT on May 29th, Venus (mag. -3.9) finally catches up with a stationary Mercury (now mag. +2.3), passing 0.4 to the North of it in the first of three observable planetary conjunctions of Venus' 2021-22 apparition. A planetary conjunction takes place when two planets attain the same celestial longitude, so that they appear close together in the night sky. The conjunction is visible from much of the world except for higher Northern and higher Southern latitudes where twilight interferes and the altitude is low. Details of this conjunction and the other two, together with their observing circumstances, are given in the Planetary Conjunctions section below.

The star marking the tip of the Bull's Southern horn is Tianguan (Greek lower-case letter 'zeta' Tau or Zeta Tauri, mag. +2.9v), a 'new' name which was officially adopted by the IAU in 2017. The name Tianguan is derived from Chinese astronomy, in which it means 'Celestial Gate', an asterism (star pattern) within the 'Net' ('B Xi') mansion. Venus passes 3.0 North of the star on May 29th. The Working Group on Star Names (WGSN), a division of the IAU, has been cataloguing and standardizing the star names used by the international astronomical community since 2016. In order to accommodate a wider diversity of global culture, the WGSN has adopted some names from mythologies other than Arab, Greek and Roman, whose star names dominate the night sky. Venus passes several other 'newly-named' stars during the current apparition, some of which will be discussed below, along with a number of better-known star names (proper names) for which the IAU have now introduced standardized spellings.

Following its conjunction with Venus, Mercury's motion turns retrograde (East to West) against the background stars and the angular distance between it and Venus widens. Mercury rapidly heads back towards the Sun and becomes lost from view in the dusk twilight at month's end.

2 0 2 1  June

On June 1st Venus passes 17 North of the orange-red star Betelgeuse (Greek lower-case letter 'alpha' Ori or Alpha Orionis, mag. +0.7v), located in the neighbouring constellation of Orion, the Hunter. Betelgeuse is a variable star positioned at the North-eastern corner of the Hunter's quadrilateral figure. Its magnitude fluctuates between about +0.0 and +1.3 over a period of several years. Venus passes 4 to the North of Orion's 'club', topped by the stars Greek lower-case letter 'chi'1 Ori and Greek lower-case letter 'chi'2 Ori (Chi-1 and Chi-2 Orionis, mags. +4.4 and +4.6), from June 1st to 3rd.

Venus enters the constellation of Gemini, the Twins, on June 2nd, attaining its most Northerly declination (angle relative to the celestial equator) for this apparition on June 5th, at +24 26' 5" (+24.4347 in decimal form). Across the world, the planet now sets at its most Northerly point along the local horizon, an effect which is more pronounced the further one is situated away from the Equator. For example, on June 5th at the Equator, the planet sets at an azimuth (bearing from True North) of 294, i.e. in the WNW. At latitude 55 North, the planet sets at an azimuth of 317, i.e. in the North-west - a full 23 further North along the horizon. The effect of latitude on the setting position of Venus during the 2021-22 apparition is shown to good effect in the horizon diagrams below.

Also on June 5th, Venus passes 2.0 North of the star Propus (Greek lower-case letter 'eta' Gem or Eta Geminorum, mag. +3.5v), also referred to as Tejat Prior or Praepes before IAU standardization in 2016. On June 7th the planet passes 1.9 North of the star Tejat (Greek lower-case letter 'mu' Gem or Mu Geminorum, mag. +3.0v), which marks the Northern twin's knee. The star was previously known by several other names: Tejat Posterior, Nuhatai, Calx and Pish Pai! On June 8th Venus passes 4.2 North of the double star Greek lower-case letter 'nu' Gem (Nu Geminorum, mag.+4.1), which the planet will occult during its morning apparition in August 2028.

On June 9th Venus passes 8.0 North of the star Alhena (Greek lower-case letter 'gamma' Gem or Gamma Geminorum, mag. +2.0), which is positioned at the foot of the Southern twin (Pollux). On June 10th the planet passes 0.8 South of Mebsuta (Greek lower-case letter 'epsilon' Gem or Epsilon Geminorum, mag. +3.0) which is positioned at the groin of the Northern twin. The planet attains a solar elongation of 20 East on the same day. Venus is now 10".6 in diameter and is about 94% illuminated.

Venus passes the perihelion point in its orbit (its closest point to the Sun) on June 12th, at a solar distance of 0.7184 AU (107.5 million kms or 66.8 million statute miles). Its most distant point from the Sun - known as the aphelion - will be reached in October.

Telescopes and Binoculars for Astronomy

iOptron

iExplore 50AZ

Refractor

Telescope

iOptron

Orion GoScope

80mm

TableTop

Refractor

Telescope

Orion

Celestron

FirstScope

76mm

Reflecting

Telescope

Celestron

Orion

Mini Giant

9 x 63

Astronomy

Binoculars

Orion

Bushnell

Powerview

16 x 50

Binoculars

Bushnell

Orion

Giant View

15 x 70

Astronomy

Binoculars

Orion

Celestron

SkyMaster

25 x 100

Astronomy

Binoculars

Celestron

Buy at

Buy at

Buy at

Buy at

Buy at

Buy at

Buy at

United States

Amazon.com

United States

Amazon.com

United States

Amazon.com

United States

Amazon.com

United States

Amazon.com

United States

Amazon.com

United States

Amazon.com

United Kingdom

Amazon.co.uk

United Kingdom

Amazon.co.uk

United Kingdom

Amazon.co.uk

United Kingdom

Amazon.co.uk

United Kingdom

Amazon.co.uk

United Kingdom

Amazon.co.uk

United Kingdom

Amazon.co.uk

Canada

CA

Deutschland (Germany)

DE

Canada

CA

Deutschland (Germany)

DE

Canada

CA

Deutschland (Germany)

DE

Canada

CA

Deutschland (Germany)

DE

Canada

CA

Deutschland (Germany)

DE

Canada

CA

Deutschland (Germany)

DE

Canada

CA

Deutschland (Germany)

DE

La France

FR

Japan

JP

La France

FR

Japan

JP

La France

FR

Japan

JP

La France

FR

Japan

JP

La France

FR

Japan

JP

La France

FR

Japan

JP

La France

FR

Japan

JP

Amazon logo

Martin J Powell is a participant in the Amazon.com, Amazon.ca, Amazon.co.jp and Amazon Europe S. r.l. Associates Programmes. These are affiliate advertising programmes designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com, Amazon.ca, Amazon.co.jp, Amazon.co.uk, Amazon.de and Amazon.fr. As an Amazon Associate, Martin J Powell earns from qualifying purchases.

By mid-June, across the inhabited world, the planet is setting about 1 hours after the Sun. Seen against the local horizon, Venus has been gaining altitude slowly but steadily after sundown with each passing day. From Equatorial and Southern latitudes, the planet continues to gain altitude after sunset over the coming months. In the Northern hemisphere, however, the planet's climb effectively 'stalls' during June and into early July, the result being that Venus remains at more-or-less the same altitude at any given time after sunset for a few months to come. This is particularly prominent at high-Northern latitudes, where the planet's low altitude, narrow solar elongation and the long summer twilight combine to produce a poor evening apparition.

At around 23 hours UT on June 13th, Venus forms an isoscelene triangle with the stars Castor (Greek lower-case letter 'alpha' Gem or Alpha Geminorum, mag. +1.6), Gemini's second-brightest star, and Pollux (Greek lower-case letter 'beta' Gem or Beta Geminorum, mag. +1.1), its brightest star, both of which are currently located to the North-east of the planet. The long sides of the triangle (Castor to Venus and Pollux to Venus) measure about 11 and the short side (Castor to Pollux) is about 4.5. The triangle is visible at dusk from a strip of the Earth stretching from the Azores South-south-westwards to South America. From the Azores the triangle is seen in twilight, pointing more-or-less straight down to the WNW horizon; from South America the triangle is seen in twilight and/or darkness, appearing tipped on its side, pointing Southwards.

On June 14th Venus passes 3.4 North of the optical double star Mekbuda (Greek lower-case letter 'zeta'Gem or Zeta Geminorum, mag. +3.9v), positioned at the right knee of the Southern twin. The planet passes 1.6 North of the star Wasat (Greek lower-case letter 'delta' Gem or Delta Geminorum, mag. +3.5) on June 17th and 8.7 South of the aforementioned Castor on June 20th.

At around 09 hours UT on June 22nd, Pollux, Greek lower-case letter 'kappa' Gem (Kappa Geminorum, mag. +3.5) and Venus form a line 5.2 in length, aligned roughly celestial North and South. The angular distance between Pollux and  Greek lower-case letter 'kappa' Gem is 3.6 and that between Greek lower-case letter 'kappa' Gem and Venus is 1.5. Extending the line some 17.7 to the South of Venus brings one very close to the bright star Procyon (Greek lower-case letter 'alpha' CMi or Alpha Canis Minoris, mag. +0.5) in the constellation of Canis Minor, the Lesser Dog. Venus passes 1.6 South of Greek lower-case letter 'kappa' Gem itself at around 1040 UT that same day, and at about 15 hours UT the planet passes 5.2 to the South of Pollux. In 2006 an exoplanet (a planet outside our Solar System) was discovered orbiting Pollux, which is 34 light years distant. Named Pollux b or Thestias (after the patronage of Leda in Greek mythology), the exoplanet is thought to have a mass equivalent to 2.3 Jupiter masses and it orbits the star at a distance of 1.6 AU in a period of 589 days. Pollux is currently one of three stars in Gemini which are confirmed as hosting exoplanets.

Venus enters Cancer, the Crab - the faintest of the zodiac constellations - on June 25th. As it does so, at around 1240 UT, Castor, Pollux and Venus form a line some 11.2 in length, orientated NNW-SSE. The alignment is visible at dusk from South-east Asia (South-east China, Taiwan, Thailand, Malaysia, Western Indonesia, Vietnam, Cambodia and Laos), low down over the WNW horizon. The line points through the South-western section of Cancer towards the head of Hydra, the Water Snake, positioned 20 to the SSE of Venus.

Venus passes 12.3 North of Cancer's brightest star Tarf (Greek lower-case letter 'beta' Cnc or Beta Cancri, mag. +3.5) on June 28th. The star is positioned at the South-western corner of the constellation's lambda-shaped (Greek lower-case letter 'lambda') figure. The name Tarf, which is not in common usage, is derived from the Arabic Al Tarf meaning 'the End', i.e. the end of the Crab's leg. The name was approved by the IAU in June 2018.

2 0 2 1  July

Between  0430 UT and 19 hours UT on July 3rd Venus passes through the Northern section of the open cluster called Praesepe or The Beehive Cluster (M44 or NGC 2632). Under dark, rural skies it is visible to the naked-eye as a hazy patch of light and in city locations it is easily seen in binoculars (for a fuller description of this cluster, see the Zodiacal Sky: Cancer, Leo and Virgo page). Closest passage takes place at around 0850 UT, when Venus is positioned 0.08 North of the cluster's centre.

On July 4th Venus passes mid-way between the stars Asellus Australis (Greek lower-case letter 'delta' Cnc or Delta Cancri, mag. +3.9) and Asellus Borealis (Greek lower-case letter 'gamma' Cnc or Gamma Cancri, mag. +4.6), which flank Praesepe on its Eastern side. The stars are separated in the night sky by 3.3, the planet passing fractionally closer to Asellus Borealis at 03 hours UT. Venus passes 7.0 North of the star Acubens (Greek lower-case letter 'alpha' Cnc or Alpha Cancri, mag. +4.3), at the South-eastern corner of the constellation, on July 7th.

Situated a short distance away to the ESE of Venus is the planet Mars (mag. +1.8), now close to the end of its 2019-21 apparition, which saw the Red Planet shine at its brightest (mag. -2.4) in the constellation of Pisces in mid-October of the previous year. In early July Venus gains on Mars at a rate of about 0.5 per day, being 5.1 WNW of the Red Planet at midnight UT on July 5th, 4.5 WNW of it on the 6th, 3.9 WNW of it on the 7th and 3.3 WNW of it on the 8th. Mars enters the constellation of Leo, the Lion, on July 10th, with Venus trailing just 1.7 behind it. Venus itself enters Leo on July 11th, when it is just 1.1 to the North-west of Mars. The waxing crescent Moon sweeps past, some 3 or 4 North of the pair, on July 12th. At 07 hours UT on July 13th the planets meet in conjunction, being separated by 0.5 (equivalent to one apparent Full Moon diameter). The conjunction is more favourable to Southern hemisphere observers, those at mid-Northern latitudes having to contend with low altitude and summer twilight. Further viewing circumstances of this conjunction are given in the Planetary Conjunctions section below.

Venus as an 'Evening Star' in the Western sky in January 2009 (Copyright Martin J Powell 2009)

Venus in the Western Sky at dusk, photographed by the writer during the planet's evening apparition in January 2009. Venus had recently passed greatest elongation and shone at magnitude -4.3 (click on the thumbnail for the full-size picture).

 

Venus leaves Mars behind it, and by the time it passes 5.7 North of the star Subra (Greek lower-case letter 'omicron' Leo or Omicron Leonis, mag. +3.5), which marks the paw of the Lion's foreleg, on July 15th, the Red Planet is 1.5 to the West of Venus. Between July 17th and 24th Venus is positioned South of the asterism commonly known as the Sickle of Leo, at the Western end of the Lion, which appears to the naked-eye as a backward question-mark (A backward question-mark). Venus passes 8.5 South of the star Ras Elased Australis (Greek lower-case letter 'epsilon' Leo or Epsilon Leonis, mag. +2.9), at the upper North-western end ('pointed end') of the sickle, on July 17th and 11.4 South of the star Rasalas (Greek lower-case letter 'mu' Leo or Mu Leonis, mag. +3.9), at the top of the sickle, on July 18th.

At the base of the Sickle of Leo (the 'dot' of the backward question-mark) is Leo's brightest star, Regulus (Greek letter Alpha Leo or Alpha Leonis, mag. +1.3). Venus passes 1.2 North of the star on July 21st. Regulus is positioned less than 0.5 North of the ecliptic so it is occasionally occulted by planets and - more frequently - by the Moon. Venus last occulted Regulus in July 1959 and will next occult the star during its morning apparition in October 2044.

On July 24th Venus passes 7.8 South of the star Algieba (Greek lower-case letter 'gamma'1 Leo or Gamma-1 Leonis, mag. +2.3), at the base of the Lion's neck. It is a double star with golden-yellow components (Greek lower-case letter 'gamma'1 Leo and Greek lower-case letter 'gamma'2 Leo) of magnitudes +2.3 and +3.6, separated by an angular distance of 4".7. The pair are about 130 light years from Earth and they orbit each other in a period of 554 years. The star is easily split in small telescopes and is considered to be one of the finest double stars in the night sky. An exoplanet was detected orbiting Algieba in 2009, named Gamma-1 Leonis b. Its mass is equivalent to 8.8 Jupiter masses and it orbits the star at a distance of 1.2 AU in a period of 428 days.

2 0 2 1  August

In early August Venus reaches magnitude -4.0 and its apparent size reaches 13". Telescopes show a notably gibbous phase, about 80% illuminated. The planet is almost 35 East of the Sun, moving South-eastwards at a steady rate of about 1.2 per day.

Gibbous Venus sketched by Paul G. Abel on December 24th 2019 (Image: ALPO-Japan/Paul G. Abel)

A Gibbous Venus with dusky cloud markings, sketched by Paul G. Abel (Leicester, UK) on December 24th 2019. Abel observed using an 8-inch (203 mm) Newtonian reflector telescope at 111x magnification. The planet was 84% illuminated and measured 12".7 across (Image: ALPO-Japan /Paul G. Abel)

Venus passes 9.2 South of the star Chertan (Greek lower-case letter 'theta' Leo or Theta Leonis, mag. +3.3), at the top of the Lion's rear leg, on August 5th. Prior to IAU standardisation in 2016 the star was also known as Coxa or Chort. At the same moment the planet passes 14.3 South of the star Zosma (Greek lower-case letter 'delta' Leo or Delta Leonis, mag. +2.7), at the rump of the Lion. The planet passes 38' (0.6) South of the star Greek lower-case letter 'sigma' Leo (Sigma Leonis, mag. +4.0), at the foot of the Lion's hind leg, at around 03 hours UT on August 7th.

Venus enters the constellation of Virgo, the Virgin on August 10th, passing 8' (0.13) North of the star Zavijava (Greek lower-case letter 'beta' Vir or Beta Virginis, mag. +3.6), at the back of the Maiden's head, at 2355 UT on August 13th. Before IAU standardization the star was also known by the names Zavijah, Zavyava or Alaraph.

Venus crosses to the South of the celestial equator (where the declination of a celestial body is 0) on August 17th, exiting Chart 1 coverage on the following day.

Positioned 21 to the North-west of Venus at midnight UT on August 18th is the planet Mercury (mag. -0.5), now entering the evening sky for its third evening apparition of 2021 and fifth apparition in total (i.e. including morning apparitions). This particular apparition of Mercury favours Southern hemisphere observers, since from here the ecliptic presents a steep angle to the Western horizon after sunset at this time of year. At 0410 UT on August 19th Mercury and Mars undergo a close conjunction in Leo, separated by just 4'.9 (0.08). The conjunction is visible at dusk from the Southern hemisphere, low down over the Western horizon. Mars heads out of view over the next week, bringing to an end an apparition which began in October 2019. Mercury, on the other hand, will slowly gain on Venus over the next few weeks, although on this occasion they will not reach conjunction.

On August 20th Venus passes 0.9 South of the star Zaniah (Greek lower-case letter 'eta' Vir or Eta Virginis, mag. +3.8), which is positioned at the rear of the Maiden's head. On August 24th Venus passes 2.1 North of the star 25 Virginis (mag. +5.8), another star which the planet will occult at a future date - in this case, during its evening apparition in 2026. On August 25th the planet passes 4.0 North of the star Greek lower-case letter 'chi' Vir (Chi Virginis, mag. +4.6), which was found to have an exoplanet in 2009. Named Chi Virginis b, the planet is thought to have a mass equivalent to 11 Jupiter masses and orbits Chi Virginis at a distance of 2.1 AU in a period of 835 days. Chi Virginis is currently one of 29 stars in Virgo which have been confirmed to have exoplanets.

Also on August 25th, Venus passes 2.8 South of the star Porrima (Greek lower-case letter 'gamma' Vir or Gamma Virginis, mag. +2.8), named after one of the Roman goddesses of prophecy. It is a binary star comprising components of magnitude +3.4 and +3.5, appearing to the naked-eye as a single star of magnitude +2.9. The pair orbit each other in a period of 169 years, their separation varying greatly throughout. They came closest together around 2006, when they were just 0".4 apart, making them difficult to separate in anything but the largest of telescopes. The pair are now widening and are becoming easier to separate in amateur telescopes, being 3".0 apart and aligned North-South in relation to each other. Before IAU standardization Porrima was also known as Arich, a name whose origin appears to be shrouded in mystery.

Star chart showing the paths of Venus and Mercury through the zodiac constellations from September to December 2021. Click for full-size image (Copyright Martin J Powell 2021)

The paths of Venus and Mercury through the zodiac constellations for the later part of Venus' evening apparition in 2021-22 (click on the thumbnail for the full-size image). The earlier part of the planets' apparition is shown in the chart above. Positions are plotted for 0 hrs Universal Time (UT) at 5-day intervals. For Venus, apparition data for the dates shown in bright white (at 10-day intervals) are included in the table above. A Southern hemisphere version of the chart (South up) is available here.

Both evening and morning apparitions of Mercury are included. Wherever a planet is too close to the Sun to view, the path is shown by a dashed line (- -). Hence Mercury's evening apparition ends in late September 2021 when it becomes lost from view in the dusk twilight. The planet is then not visible with the naked-eye until it re-emerges in the morning sky about three weeks later. Because Mercury is mostly seen by naked-eye under twilit conditions, many of the fainter stars shown in the planet's vicinity may not be visible when the planet itself is observed.

The positions at which Venus and Mercury attain greatest elongation from the Sun are indicated by the letters 'GE', with the solar elongation angle in brackets; Eastern elongations apply for evening apparitions and Western elongations for morning apparitions. Note that the September 2021 evening apparition of Mercury shown on the chart favours Southern hemisphere observers whilst the October morning apparition favours Northern hemisphere observers.

A planetary conjunction of Venus with Mercury takes place on December 29th, indicated on the chart by the symbol Conjunction symbol. On this date, a line drawn through the relevant planet paths (with respect to Celestial North) show them to be in alignment. For more details see the planetary conjunctions section below.

The faintest stars shown have an apparent magnitude of about +4.8. Printer-friendly versions of this chart are available for Northern and Southern hemisphere views. Click here to see a 'clean' star map of the area (i.e. without planet paths); a printer-friendly version can be seen here. Astronomical co-ordinates of Right Ascension (longitude, measured Eastwards in hrs:mins) and Declination (latitude, measured in degrees North or South of the celestial equator) are marked around the border of the chart.

The eight star names shown in yellow-green were officially adopted by the International Astronomical Union (IAU) in 2017-18.

Venus enters Chart 2 coverage on August 24th. On August 26th Mercury (mag. -0.1) enters Virgo, located 17.6 to the North-west of Venus and gaining on it by about 0.4 per day. Venus crosses to the South of the ecliptic on August 29th.

2 0 2 1  September

On September 1st Venus passes 2.1 South of the double star Greek lower-case letter 'theta' Vir (Theta Virginis, mag. +4.4), located at the base of the Maiden's neck; the planet will occult this star in November 2044. Venus passes 1.7 North of Virgo's brightest star Spica (Greek lower-case letter 'alpha' Vir or Alpha Virginis, mag. +1.0) on September 5th.

Mercury, now magnitude +0.0, continues to gain on Venus a little each day in early September, being 16.1 to the WNW of Venus at midnight UT on the 1st and 15.6 to the WNW of it on the 4th. The pair come closest together on September 8th, when they are 15.3 apart; the waxing crescent Moon passes several degrees to the North of the pair from this day to the 10th. Mercury, at magnitude +0.2, reaches greatest elongation East (26.7) on September 14th, positioned 15.7 to the WNW of Venus.

At 2221 UT on September 15th Venus is positioned at precisely 1.0000 AU from the Earth, i.e. the same distance as the average distance of the Earth from the Sun (149.5 million kms or 92.9 million statute miles). At this point in the apparition the distance between Venus and the Earth is reducing at an average rate of about 1.1 million kms (684,300 statute miles) per day.

On September 16th Venus passes 4.3 South of the star Kang (Greek lower-case letter 'kappa' Vir or Kappa Virginis, mag. +4.2), another 'new' name adopted by the IAU over the last few years. In Chinese astronomy Kang was both a constellation and a name given to the second of 28 lunar mansions. On September 17th Venus passes 1.8 South of the star Khambalia (Greek lower-case letter 'lambda' Vir or Lamba Virginis, mag. 4.5), which is positioned only 39' (0.65) from the border with Libra. It is a Coptic name meaning 'crooked-clawed'. Venus enters Libra itself on September 18th.

As Mercury passes to the South of Spica on September 23rd its motion against the background stars of Virgo is slowing, whilst Venus continues steadily South-eastwards at a rate at around 1.1 per day. Venus passes 2.2 South of the double star Zubenelgenubi (Greek lower-case letter alpha Lib or Alpha Librae, mag. +2.8) on September 24th and 5.9 North of the star Brachium (Greek lower-case letter 'sigma' Lib or Sigma Librae, mag. +3.3), located at the base of the Scales, on September 27th. Mercury reaches its Eastern stationary point on the same day, positioned 2.2 to the SSE of Spica, by which time it is 23 to the WNW of Venus. Venus and Mercury continue to be seen together in the evening sky through to the end of the month, when Mercury finally heads into the dusk twilight.

Venus passes 11.0 South of the star Zubeneschamali (Greek lower-case letter 'beta' Lib or Beta Librae, mag. +2.5), the Northernmost star of the Scales' quadrilateral figure, on September 30th.

2 0 2 1  October

By early October Venus has brightened to -4.2 and its apparent size has almost reached 20". The planet is around 45 from the Sun and shows a 60% illuminated gibbous phase through telescopes. On October 3rd Venus passes through the aphelion point in its orbit, where it is furthest away from the Sun at 0.7282 AU (108.9 million kms or 67.7 million statute miles).

Throughout October the planet is best seen from mid-Southern latitudes. At 35 South, some 30 minutes after sunset, Venus is placed 38 high in the Western sky, setting in darkness around 4 hours after sundown. In stark contrast, high-Northern latitudes see the planet setting in twilight less than an hour after sunset. Details of the planet's direction and altitude at 30 minutes after sunset for various latitudes are listed in the table below, where they are also shown in the form of a horizon diagram.

On October 4th Venus passes 7.0 South of the star Zubenelhakrabi (Greek lower-case letter 'gamma' Lib or Gamma Librae, mag. +3.9), an Arabic name meaning 'the claws of the Scorpion'. The description, of course, refers to what we now know as the constellation of Scorpius, the Scorpion, positioned just to the East of Libra. The figure that we see today as Libra was originally envisioned by both the ancient Greeks and the Arabs as the Scorpion's claws, however the Romans saw the Western group of stars as a Balance held by Astraea, the goddess of Justice.

Venus enters Scorpius on October 7th, passing 47' (0.8) South of the star Dschubba (Greek lower-case letter 'delta' Sco or Delta Scorpii, mag. +2.2) on October 10th and 3.9 South of the striking double star Acrab (Greek lower-case letter 'beta'1 Sco or Beta-1 Scorpii, combined mag. +2.6), formerly known as Graffias, on October 11th. Between the hours of 1540 UT and 1840 UT on the same day, Venus passes 3.0 South of the two Omegan stars Jabhat al Akrab (Greek lower-case letter 'omega'1 Sco or Omega-1 Scorpii, mag. +3.9) and Greek lower-case letter 'omega'2 Sco (Omega-2 Scorpii, mag. +4.3). Together with Dschubba, Acrab and the quadruple star named Jabbah (Greek lower-case letter 'nu' Sco or Nu Scorpii, mag. +4.0), they form a distinctive asterism in Northern Scorpius. Venus passes 4.6 South of Jabbah on the following day (12th).

At around 21 hours UT on October 13th Venus passes 1.3 South of the eighth-magnitude globular cluster M80 (or NGC 6093) which, like most of the brighter globulars, appears as a faint, circular, fuzzy spot of light through binoculars under dark skies. On the following day (14th) Venus passes 1.0 North of the variable star named Alniyat (Greek lower-case letter 'sigma' Sco or Sigma Scorpii, mag. +2.9v).

Venus cuts across the South-western corner of the large 'non-zodiac' constellation of Ophiuchus, the Serpent Bearer, for a 22-hour period from 07 hours UT on October 15th before re-entering Scorpius on the 16th. Several hours later the planet passes 1.5 North of Scorpius' brightest star Antares (Greek lower-case letter 'alpha' Sco or Alpha Scorpii, mag. +1.0v). The star shines with an unmistakable orange-red hue since it is a red supergiant, estimated to measure at least 400 times the diameter of our Sun. It is also a variable star, fluctuating between magnitudes +0.6 to +1.6 over a 5-year period.

On October 18th Venus passes 3.0 North of the star Paikauhale (Greek lower-case letter 'tau' Sco or Tau Scorpii, mag. +2.8), a name which is Hawaii'an for a vagabond. It is another of numerous stars which have been formally assigned 'new' names by the IAU in recent years. On October 21st Venus passes 8.5 North of the star Larawag (Greek lower-case letter 'epsilon' Sco or Epsilon Scorpii, mag. +2.2), positioned about half-way along the Scorpion's tail. It is an Aboriginal name from the Wardaman culture of Northern Australia, the IAU having approved the name in 2017.

Later on October 21st, Venus enters Ophiuchus. At 0009 UT on the following day (22nd) the distance between the Earth and Venus is the same as that between the Sun and Venus, at 0.7275 AU (108.8 million kms or 67.6 million miles). Seen from far above the Earth's North pole, the Earth, Venus and the Sun now appear to form an isoscelene triangle in space, with Venus positioned at the apex.

Between the hours of 1845 UT and 2015 UT on October 23rd Venus passes across the seventh-magnitude globular cluster M19 (NGC 6273). At 12' (0.2) in diameter, it is a roughly oval-shaped 'fuzzball' of stars which can easily be seen through binoculars and small telescopes under fully dark skies. The planet passes 10.6 South of Sabik (Greek lower-case letter 'eta' Oph or Eta Ophiuchi, mag. +2.5), the second brightest star in Ophiuchus, on October 25th.

Positioned 2.8 East of M19 is the fifth-magnitude star Guniibuu (36 Oph A or 36 Ophiuchi A, mag. +5.1), one of a pair of orange dwarf stars (A and B) which are easily split in small telescopes. Assigned the name by the IAU in 2018, it refers to a mythological robin red-breast in Australian Aboriginal culture. Venus occults the star at 1445 UT on October 26th, blocking it from view for up to nine minutes. The event is visible in darkness, though unfortunately it is only viewable from the unpopulated Southern Ocean.

By the time Venus passes 1.7 South of Theta Ophiuchi (Greek lower-case letter 'theta' Oph, mag. +3.2), the brightest star in the Southernmost region of Ophiuchus, on October 28th, its apparent motion has slowed to about 1 per day.

Venus reaches its greatest elongation from the Sun for this apparition (47.04 East) at 21 hours UT on October 29th in Southern Ophiuchus, positioned 2.6 South-east of Theta Ophiuchi. Telescopes now show Venus' disk half-illuminated (phase = 0.50 or 50%), which is often referred to as the moment of dichotomy. The planet has an apparent diameter of  25" and shines at magnitude -4.3. Although the greatest elongation from the Sun occurs on October 29th, Venus is in fact positioned at precisely 47.0 elongation for an 11-day period from October 25th through to November 4th. When seen from a point far above the Solar System, the Earth, Venus and the Sun now form a right-angled triangle in space, with Venus positioned at the 90 angle.

Venus at dichotomy imaged by Luis A Gmez on March 24th 2020 (Image: ALPO-Japan/Luis A Gmez)

Venus at dichotomy sketched by Volker Heesen on March 29th 2020 (Image: ALPO-Japan/Volker Heesen)

Venus at Dichotomy (left) imaged by Luis A Gmez (Santo Domingo, Dominican Republic) on March 24th 2020 using an 8-inch (203 mm) Schmidt-Cassegrain telescope fitted with a 3x Barlow lens and CMOS camera, and (right) sketched by Volker Heesen (Hamburg, Germany) five days later, using a 120mm/1000mm achromatic refractor telescope at 140x and 200x magnifications. Heesen used yellow (#12) and violet (#47) filters to enhance details in the cloud. Note the 'cusp collars' at the planet's polar regions in Heesen's sketches, which are subtly visible in Gmez' image (Images: ALPO-Japan / Luis A Gmez /Volker Heesen)

For a few days around greatest elongation, telescopic observers often attempt to determine the precise date of dichotomy. It is the moment when the terminator (the line separating the light and dark sides of the planet) appears perfectly straight, essentially dividing Venus into two perfect halves. Solar System geometry suggests that this should occur on greatest elongation day, however it often does not and the precise reason for this was not understood until quite recently. Observers often report the straight terminator a few days earlier or later than the greatest elongation date (early in evening apparitions and late in morning apparitions). Hence in the current apparition, telescopic observers can expect to see a 50% phase on or around October 26th. This is commonly known as the phase anomaly or Schrter's Effect (the latter named after the German astronomer Johann Schrter, who first observed the effect in 1793). The phenomenon is thought to be due to Venus' dense atmosphere scattering the sunlight. Blue light scatters more readily than red light (which is why the sky on Earth appears blue) and this effect is also seen on Venus when it is observed using coloured eyepiece filters. The phase anomaly is much more evident when the planet is observed through a blue filter, whilst the anomaly is less evident when seen through filters of other colours, e.g. red or yellow.

For Southern hemisphere observers the date of Venus' maximum solar elongation in 2021 is ideal, since it coincides with the period during which the planet attains its highest position above the local horizon after sunset. On greatest elongation day at latitude 26 South, for example, the planet attains a significant 39.5 above the Western horizon at 30 minutes after sunset - the highest altitude attained from any latitude during the 2021-22 apparition. Latitudes further South do not fare much worse: at 35 South, for example, Venus is only 1 lower in the same circumstances, whilst at 45 South the planet is only 3 lower in the sky. On this day Venus is visible after sunset for a period of 3 hours (at 26 South), 4 hours (at 35 South) and 4 hours (at 45 South). In contrast, Northern hemisphere observers see the planet only 8 above the horizon (at 50 North) and 26 above the horizon (at 20 North), being visible after sunset for 2 hours and 3 hours respectively. The Southern hemisphere advantage on this occasion is the result of Venus' high Southerly declination at this time (Greek Lower-case letter 'delta' = -26.9) coinciding with its maximum solar elongation.

For the Southern hemisphere as a whole, the 2021-22 apparition is the best of the five evening apparition 'cycles' of Venus (there being five evening and five morning apparitions in each Venusian 8-year 'cycle'). For Northern hemisphere observers, on the other hand, it is the worst evening apparition in the 'cycle'. But for telescopic observers of the planet, the relatively high placement of Venus in the sky after sunset is of little benefit. Because of the planet's glare when seen against a darkening sky, coupled with the Earth's troublesome atmospheric turbulence at low altitudes, most experienced telescope users observe the planet in full daylight, when it is high above the horizon and more easily seen against a brighter sky. Of course, extreme caution must be taken when attempting to observe any of the planets in daylight and the Sun must be positioned at a safe angular distance from the planet and be fully shielded from view.

Greatest elongation day having passed, Venus begins to show a crescent phase through telescopes, its apparent size continuing to enlarge slightly with each passing day. The planet passes 10.1 North of Shaula (Greek lower-case letter 'lambda' Sco or Lambda Scorpii, mag. +1.6), positioned at the 'sting' of the Scorpion's tail, on October 30th.

2 0 2 1  November

On November 2nd Venus enters Sagittarius, the Archer, where it will remain through to the end of the apparition.

In early November Venus is best seen from Equatorial latitudes. Here the planet stands 36 high in the South-west at 30 minutes after sunset, being visible for 3 hours after sundown. Directions, altitudes and visible durations of the planet at other latitudes in early November can be seen by referring to the table below.

On November 6th Venus attains its most Southerly position in the zodiac for the 2021-22 apparition, at a declination of -27 14' 31" (-27.2419 in decimal form), which is the planet's most Southerly declination since October 1930 and before the year 2029. Venus now sets at its most Southerly point along the local horizon, an effect which is more pronounced the further away from the Equator an observer is situated. At the Equator (latitude 0), for example, Venus sets in the WSW at this time whilst at 55 North (where the planet is still setting in twilight) it sets in the South-west, more than 20 further South along the horizon.

For a period of 17 hours between November 6th and 7th, Venus passes 2.8 South of the sixth-magnitude gaseous nebula commonly called the Lagoon Nebula or M8 (NGC 6523). With an apparent dimension of 90' by 40', the nebula is visible to the naked-eye from dark sites and is a spectacular sight through larger telescopes - particularly those fitted with nebular filters. The planet's passage South of the nebula begins at about 08 hours UT on the 6th and ends at about 01 hours UT on the 7th.

Crescent Venus imaged by Niall MacNeill on April 18th 2020 (Image: ALPO-Japan/Niall MacNeill)

Crescent Venus imaged by Niall MacNeill (Wattle Flat, NSW, Australia) on April 18th 2020. Venus was 43 from the Sun, 35% illuminated and measured 32".3 across.

(Image: ALPO-Japan /Niall MacNeill)

From November 7th through to the 23rd, Venus passes through the so-called Teapot asterism in central Sagittarius. Seen in a North-up orientation, the teapot appears 'tipped up', pouring its contents South-westwards into neighbouring Scorpius. The asterism extends from the star Alnasl (Greek lower-case letter 'gamma' Sgr or Gamma Sagittarii, mag. +3.0) in the West to the star Tau Sagittarii (Greek lower-case letter 'tau' Sgr, mag. +3.3) in the East. The asterism passage gets underway on November 7th when Venus passes 3.2 North of Alnasl, which is positioned at the front of the Archer's bow. Before IAU standardisation the star was commonly known as Nash.

On November 8th at around 0530 hours UT the waxing crescent Moon passes in front of Venus, blocking it from view, in the planet's second lunar occultation of the apparition. The event is visible in twilight and/or darkness from far Eastern Russia (Sea of Okhotsk, Kamchatka), the South-western Bering Sea and the Western Aleutian Islands. It is technically visible in daylight from Eastern Mongolia, North-eastern China, the Korean peninsula and far South-eastern Russia. Details of the timings and track of visibility can be seen by following the link in the Moon near Venus Dates section below.

On November 10th Venus passes 2.7 North of Kaus Media (Greek lower-case letter 'delta' Sgr or Delta Sagittarii, mag. +2.7), positioned at the centre of the Archer's bow. Before IAU standardisation it was also known by the names Kaus Meridionalis and Kaus Medius.

On November 12th Venus passes 1.6 South of Kaus Borealis (Greek lower-case letter 'lambda' Sgr or Lambda Sagittarii, mag. +2.8), positioned at the top of the Teapot asterism. On November 14th the planet passes 3.0 South of the globular cluster M22 (NGC 6656), which is considered to be one of the finest globulars in the night sky. It has an apparent diameter of 24' and its integrated magnitude (i.e. its apparent magnitude if the cluster were concentrated into a single point) is about +5.9. It is just visible to the naked-eye from dark sites, is easily seen through binoculars and is beautifully resolved in telescopes.

In mid-November Northern Tropical latitudes see the planet attain its highest altitude after sunset. At latitude 20 North Venus is positioned 28 high in the South-west at 30 minutes after sunset, being visible for around 3 hours after sundown. Meanwhile, higher Northern latitudes are only now beginning to see Venus set in darkness.

Over the next week Venus passes the four stars which form the 'handle' of the Teapot. The planet passes 13' (0.21) North of Phi Sagittarii (Greek lower-case letter 'phi' Sgr, mag. +3.1) at 04 hours UT on November 17th and 11' (0.18) South of the constellation's second-brightest star Nunki (Greek lower-case letter 'sigma' Sgr or Sigma Sagittarii, mag. +2.0) at 20 hours UT on November 19th. Venus passes 3.6 North of Ascella (Greek lower-case letter 'zeta' Sgr or Zeta Sagittarii, mag. +2.6), at the bottom of the Teapot's handle, on November 22nd. Finally, on November 23rd Venus passes 1.6 North of Greek lower-case letter 'tau' Sgr (Tau Sagittarii, mag. +3.3) which marks the Eastern end of the Teapot. The planet passes 4.9 South of the star Albaldah (Greek lower-case letter 'pi' Sgr or Pi Sagittarii, mag. +2.9), positioned at the top of the Archer's head, on November 24th. Venus will occult Albaldah during the planet's morning apparition in 2035.

On November 29th Venus passes 0.6 South of the star Greek lower-case letter 'chi'1 Sgr (Chi-1 Sagittarii, mag. +5.0) which the planet will occult during its evening apparition in 2040. Later that same day the planet passes 3.2 South of 50 Sagittarii (50 Sgr, mag. +5.6), another star which the planet will occult at a future date, in this case in 2048.

By the end of November Venus' Eastward motion has slowed further to 0.7 per day.

2 0 2 1  December

Venus continues its way through Sagittarius to the constellation's much fainter Eastern region, passing 0.6 North of the star 52 Sagittarii (mag. +4.6) on December 4th. At around 14 hours UT on this day the planet attains its greatest brilliancy for this apparition, at magnitude -4.7. Greatest brilliancy occurs when the percentage of the illuminated portion of the disk (phase) and its angular size combine to best visual effect. In 2021 this takes place when the planet is 26% illuminated (phase = 0.26), its angular diameter is 41".3 and its solar elongation is 39. Thirty minutes after sunset, naked-eye observers across the world now see Venus in its true majestic brilliance against a darkened sky, positioned between 7 (at 60 North) and 32 (at 15 South) above the horizon and being visible for around 2 hours after sunset.

In early December observers at mid-Northern latitudes now see Venus at its best, although the altitudes are somewhat disappointing. Half an hour after sunset at latitude 40 North, the planet is positioned 18 high in the South-west, whilst at 50 North the planet is positioned only 13 high in the SSW. Over the next two weeks, observers at latitude 60 North see the planet setting in near-darkness for the first time in the apparition.

At 17:25 UT on December 11th a very rare and close conjunction takes place, albeit not visible to the naked-eye or binoculars - and technically very difficult to observe in telescopes! A crescent Venus passes just 4' (0.06) North of the dwarf planet Pluto (mag. +14.4) which has been painstakingly winding its way through Sagittarius since 2007. At the moment of conjunction, Venus is a staggering 36 million times brighter than Pluto, the dwarf planet being 97 times more distant! This is the closest line-of-sight passage of the two bodies since the year 1525 and before the year 2515. Pluto - whose official status as a true 'planet' was withdrawn by the IAU in 2006 - will leave Sagittarius fully behind it in 2024, when it enters Capricornus, the Sea Goat.

On December 18th Venus' Eastward motion ceases when it reaches its Eastern stationary point, some 3.3 West of the border with Capricornus. Over the coming days the planet begins to move retrograde (East to West), its solar elongation reducing more rapidly with each passing day. Venus has also been creeping Northward since late November, carrying it up into North-eastern Sagittarius and slowly improving the visibility of the planet after sunset from Northern latitudes. The planet's setting position also begins to drift Northwards along the local horizon over the coming weeks, an effect which is most pronounced at higher Northern hemisphere latitudes. Venus crosses to the North of the ecliptic once more on December 20th.

After a long wait, Venus is now best seen from high-Northern latitudes, although at latitude 60 North it is only a paltry 8 above the SSW horizon at 30 minutes after sunset. The 2021-22 apparition of Venus has not been a good one for observers located at these latitudes; here it has been the worst apparition since that of 2013-14. By contrast, the previous evening apparition of 2019-20 was an excellent one, with Venus positioned high in the Western sky after sunset - the best of the planet's five evening apparitions for Northern hemisphere observers.

From around mid-December, Venus' altitude at any given time after sunset rapidly falls away with each passing day. Observers positioned at the Equator and the Southern Tropical regions see the greatest fall of altitude per day. From the Equator, on December 18th Venus is placed 21 above the horizon at 30 minutes after sunset, but by December 28th it has fallen to just 8. Northern hemisphere observers see a much less dramatic fall: from 50 North at the same period after sunset, the planet is positioned 12 high on the 18th and 8 high on the 28th. These changes in altitude over time are illustrated in the horizon diagrams below where the slope of the planet's apparent path against the local horizon from early December 2021 through to the end of the apparition can be compared across the various latitudes.

Crescent Venus at dusk imaged by Martin R Lewis on May 29th 2020 (Image: ALPO-Japan/Martin R Lewis)

Thin Crescentic Venus imaged by Martin R Lewis (St. Albans, UK) on May 29th 2020 using an 8-inch (222mm) Dobsonian reflector telescope fitted with a CMOS camera. The planet was only 8 East of the Sun, 1% illuminated and measured 57".5 across (Image: ALPO-Japan / Martin R Lewis)

From around December 26th Mercury (mag. -0.7) emerges into the dusk sky for its final apparition of 2021, which in fact extends into the start of 2022. Mercury and Venus are moving in opposite directions against the background stars of Sagittarius at this time, one entering the dusk sky and the other one leaving it. The orange-pink planet moves swiftly, speeding ENE towards Venus at a rate of 1.4 per day whilst Venus moves retrograde (towards the WNW) at a more leisurely 0.4 per day. Mercury is positioned 5.9 to the South-west of Venus at midnight UT on December 27th and 4.7 to the SSW of it on the 28th. At 0103 UT on December 29th Mercury (mag. -0.6) speeds past Venus (-4.2) at an angular distance of 4.2 in the third and final planetary conjunction of the 2021-22 apparition. Being only 16 from the Sun, this wide conjunction is visible only between mid-Northern and mid-Southern latitudes. Mercury will continue to be observable in the dusk sky through to mid-January 2022.

As the apparent size of the Venusian crescent continues to enlarge it also becomes more slender, such that the dark (non-illuminated) side of the planet is well-displayed when seen from the Earth. With the aid of ultraviolet and infrared filters, telescopic observers now begin their search for the mysterious and elusive Ashen Light, a faint glowing of the night side of Venus which until recently had no clear explanation. First observed in 1643 by the Italian astronomer Giovanni Riccioli (1598-1671), the effect is best observed when Venus is at a narrow crescent phase and is seen against a fully dark Today, the Ashen Light is considered to be caused either by the planet's surface glowing red hot (due to its extremely high surface temperature) or due to electrical activity insky. its dense atmosphere.

As the apparition nears its end, observers equipped with binoculars may attempt to detect the tiny crescent of Venus soon after sunset as it languishes low over the WSW sky. Telescopes show a large, thin crescent at this point, 60" in diameter and just 3% illuminated, the image greatly disturbed by the Earth's turbulent atmosphere and split into the rainbow colours by an effect called dispersion (an example of how dispersion appears through a telescope can be seen here). Observers with exceptionally-good eyesight may attempt to view the crescent of Venus with the naked-eye. Whilst this may seem extraordinary, the planet's large apparent size brings it very close to the generally-accepted resolution of the human eye, i.e. 1 arcminute (60"). Away from Equatorial latitudes, glare is no longer a problem because Venus is now seen in bright twilight through to its setting, theoretically allowing the crescent to be discerned more easily.

By the third week of December observers at higher Southern latitudes begin to have some difficulty viewing Venus as it sinks into the bright dusk twilight, setting less than an hour after the Sun. Meanwhile, over the festive season, observers at mid and high Northern latitudes enjoy views of Venus of between 1 and 2 hours after sunset, the planet being positioned several degrees above the South-western horizon at dusk. However the duration of the planet's visibility dwindles rapidly in the closing week of December. By the time Venus' solar elongation falls below 15 East on December 30th, it is once again setting in twilight across the inhabited world. After having reached a peak brilliancy of magnitude -4.7 in early December, Venus ends the month at a rather fainter -4.3.

2 0 2 2  January

In the opening days of the new year, Venus becomes lost from view from all locations as it speeds towards inferior conjunction (passing between the Earth and the Sun) on January 9th. At the moment of inferior conjunction, Venus is positioned 4.8 North of the Sun's centre (ecliptic latitude Greek lower-case letter 'beta' = +4.8). After inferior conjunction, the planet swiftly heads into the morning sky. From around mid-January, Venus is seen rising as a 'Morning Star' in the ESE sky shortly before the Sun, heralding a new morning apparition (2022) which lasts through to September of that year.

 [Terms in yellow italics are explained in greater detail in an associated article describing planetary movements in the night sky.]

^ Back to Top of Page

Venus Conjunctions with other Planets in 2021

Viewed from the orbiting Earth, whenever two planets appear to pass each other in the night sky (a line-of-sight effect) the event is known as a planetary conjunction or appulse. Not all planetary conjunctions will be visible from the Earth, however, because many of them take place too close to the Sun. Furthermore, not all of them will be seen from across the world; the observers' latitude will affect the altitude (angle above the horizon) at which the two planets are seen at the time of the event and the local season will affect the sky brightness at that particular time. A flat, unobstructed horizon will normally be required to observe most of them.

Planetary conjunctions are generally considered most noteworthy when they involve two bright planets, and none are more spectacular than those involving Venus. During the course of a typical Venusian apparition, Venus moves through eight or more zodiac constellations and in doing so it passes other planets in the sky - and in the case of Mercury, often on more than one occasion.

Because Venus never appears more than 47 from the Sun, it follows that any planetary conjunction involving Venus will also never occur above this angular distance, i.e. its solar elongation will always be less than 47. For an Earthbound observer, a superior planet (i.e. Mars and beyond) seen at such a small elongation poses something of a problem, since it will then be considerably more distant from the Earth - and therefore fainter - than when it is closest and brightest in the sky (namely, at opposition, when its elongation is 180 from the Sun). Jupiter is affected to a much lesser extent since it is always above magnitude -1.6 (brighter than Sirius, the brightest star in the sky).

A significant factor in determining whether a planetary conjunction is 'easy' or 'difficult' is the altitude that the fainter planet is positioned as it comes into view in the dusk twilight. This in turn affects the duration for which the pair are visible after sunset.

Three planetary conjunctions involving Venus take place during the period in question: two with Mercury and one with Mars. The Venus-Mars conjunction of July 13th 2021 is the most visually spectacular of the three, although the Red Planet shines feebly at magnitude +1.8 - about the faintest it can get when seen from Earth. Venus and Mars appear separated by an angular distance equivalent to that of the Full Moon. The conjunction is viewable from latitudes South of about 45 North. From latitude 40 North the pair are positioned just 9 above the WNW horizon as Mars comes into view, being visible for a little less than an hour thereafter. Elsewhere the altitudes and directions of the planetary pair as Mars comes into view are as follows: 14 high in the West (at 30 North), 21 high in the WNW (at the Equator) and 18 high in the North-west (at 35 South), the planets being visible for 1 hours, 1 hours and 1 hours respectively. Adding to the event is the waxing crescent Moon in the vicinity.

The first conjunction between Venus and Mercury, on May 29th 2021, takes place early in the apparition when observers at mid-Southern latitudes have only recently begun to detect Venus in the dusk sky. Taking place at only 16 East of the Sun, the conjunction is best seen around Northern Tropical latitudes; nowhere are the planets seen higher than 12 above the local horizon as the fainter planet (Mercury) comes into view. From the Equator the pair are positioned around 11 high in the WNW. Mid-Northern latutudes see the pair only around 8 high in the WNW whilst mid-Southern latitudes see them just 6 high in the North-west. In each of these cases the planets set in twilight around 45 minutes after Mercury becomes visible.

The second Venus-Mercury conjunction, on December 29th 2021, takes place late in the apparition when observers are only days away from losing sight of Venus. The narrow solar elongation means that the planets are seen in twilight throughout from locations North of about 35 North and South of about 40 South. At 4.2 separation it is a wide passage of the two planets, Mercury speeding past Venus as the latter planet crawls slowly in the opposite direction against the background stars. From latitude 40 North the pair are 7 high in the South-west as Mercury comes into view, setting 30 minutes thereafter. Between 30 North and the Southern Tropics they are 8-10 high in the WSW and visible for around 40 minutes, setting in darkness. At 35 South the pair are only 4 high in the WSW, being visible for less than half an hour and setting in twilight.

The three planetary conjunctions with Venus which are viewable during the 2021-22 apparition are listed in the table below.

Table showing the visible Venus conjunctions with other planets during the evening apparition of 2021-22 (Copyright Martin J Powell, 2021)

Venus conjunctions with other planets during the 2021-22 evening apparition  The column headed 'UT' is the Universal Time (equivalent to GMT) of the conjunction (in hrs : mins). The separation (column 'Sep') is the angular distance between the two planets, measured relative to Venus, e.g. on 2021 Jul 13, Mars is positioned 0.5 South of Venus at the time shown. The 'Fav. Hem' column shows the Hemisphere in which the conjunction is best observed (Northern, Southern and/or Equatorial). Note that observers located close to the Northern/Southern visibility boundary of any given conjunction will find it difficult or impossible to observe because of low altitude and/or bright twilight.

In the 'When Visible' column, a distinction is made between Dusk and Evening visibility; the term Dusk refers specifically to the twilight period after sunset, whilst the term Evening refers to the period after darkness falls (some conjunctions take place in darkness, others do not, depending upon latitude). The 'Con' column shows the constellation in which the planets are positioned at the time of the conjunction.

To find the direction in which a conjunction is seen, note down the constellation in which the planets are located ('Con' column) on the required date and find the constellation's setting direction for your particular latitude in the Rise-Set direction table.

The table is excerpted from another showing Venus conjunctions with other planets from 2021 to 2025 on the Venus Conjunctions page.

Although any given conjunction takes place at a particular instant in time, it is worth pointing out that, because of the planets' relatively slow daily motions, such events are interesting to observe for several days both before and after the actual conjunction date.

There are in fact two methods of defining a planetary conjunction date: one is measured in Right Ascension (i.e. perpendicular to the celestial equator) and the other is measured along the ecliptic, which is inclined at 23 to the Earth's equatorial plane (this is due to the tilt of the Earth's axis in space). An animation showing how conjunction dates are determined by each method can be found on the Jupiter-Uranus 2010-11 triple conjunction page. Although conjunction dates measured along the ecliptic are technically more accurate (separations between planets can be significantly closer) the Right Ascension method is the more commonly used, and it is the one which is adopted here.

^ Back to Top of Page

Moon near Venus Dates, May 2021 to January 2022

The Moon is easy to find, and on one or two days in each month, it passes Venus in the sky. Use the following tables to see on which dates the Moon passed near the planet between May 2021 and January 2022:

Date Range

(World)

Conjunction (Geocentric)

Solar Elong.

Moon Phase

Date & Time

Sep. & Dir.

2021

May 12*/13

May 12, 22h UT

1.1 N

12E

Waxing Crescent

throughout

Jun 11/12

Jun 12, 05h UT

0.9 S

20E

Jul 11/12

Jul 12, 09:08 UT

3.2 S

28E

Aug 10/11

Aug 11, 06:58 UT

4.3 S

35E

Sep 9/10

Sep 10, 02:08 UT

4.1 S

41E

Oct 9/10

Oct 9, 18:35 UT

2.8 S

46E

Nov 7/8

Nov 8, 05:20 UT

1.1 S

47E

Dec 6/7

Dec 7, 00:47 UT

1.9 N

38E

2022

Jan 2/3

Jan 3, 08:09 UT

7.5 N

10E

 

* A lunar occultation takes place, being partly visible in twilight from the South-eastern Pacific Ocean. See the NAOJ website for visibility track and timings.

A lunar occultation takes place, visible in twilight/darkness from far Eastern Russia (Sea of Okhotsk, Kamchatka), the South-western Bering Sea and Western Aleutian Islands. See the NAOJ website for visibility track and timings.

Moon near Venus dates for the evening apparition of 2021-22. The Date Range shows the range of dates worldwide (allowing for Time Zone differences across East and West hemispheres). Note that the dates, times and separations at conjunction (i.e. when the two bodies are at the same Right Ascension) are measured from the Earth's centre (geocentric) and not from the Earth's surface (times are Universal Time [UT], equivalent to GMT). The Sep. & Dir. column gives the angular distance (separation) and direction of the planet relative to the Moon, e.g. on July 12th 2021 at 09:08 UT, Venus is positioned 3.2 South of the Moon's centre.

Because Venus never appears more than 47 from the Sun, the Moon always shows a crescent phase whenever it passes the planet in the sky: a waxing crescent during evening apparitions and a waning crescent during morning apparitions.

A lunar occultation of Venus on December 1st, 2008 (Copyright Martin J Powell, 2008)

 

 

 

On December 1st, 2008 observers in Europe and North-west Africa witnessed the four-day-old Moon passing in front of Venus (in an event called a lunar occultation) around local sunset/dusk. This photograph of the event was taken by the writer from the south-western United Kingdom. Venus had just emerged from behind the Moon after being hidden from view for about 90 minutes. Depending upon the angular size and phase of Venus at the time of any given occultation, it can take anything from several seconds to more than a minute for the planet to become completely obscured by the passing Moon, and the same time to re-appear. This is in contrast to a star, which, being a very distant point of light, disappears behind the Moon more or less instantaneously.

During the same evening, Venus, Jupiter and the crescent Moon formed an impressive celestial grouping in the sky, whose appearance varied somewhat depending upon the observers' location and the time of viewing. The grouping was nicknamed 'the smiley face' conjunction and many photos of the event were taken by the general public worldwide.

The Moon moves relatively quickly against the background stars in an Eastward direction, at about its own angular width (0.5) each hour (about 12.2 per day). Because it is relatively close to the Earth, an effect called parallax causes it to appear in a slightly different position (against the background stars) when seen from any two locations on the globe at any given instant; the further apart the locations, the greater the Moon's apparent displacement against the background stars. Therefore, for any given date and time listed in the table, the Moon will appear closer to Venus when seen from some locations than others. For this reason, the dates shown in the table should be used only for general guidance.

^ Back to Top of Page

 

Direction, Altitude & Visibility Duration of Venus after Sunset, May to December 2021

The following tables give the direction and altitude (angle above the horizon) of Venus at 30 minutes after sunset, together with the visibility duration of the planet after sunset, for the 2021-22 evening apparition. An explanation of abbreviations in the tables is given in the box below. For the sake of convenience, the table is split into Northern and Southern hemisphere latitudes (the Equator is included in both tables to allow interpolation of the data for observers situated at Equatorial latitudes). The tables should prove sufficient to locate the planet in twilight, allowing telescope users to view the planet in comfort (because of Venus' brilliance, glare becomes a problem when the planet is seen through the eyepiece against a dark sky). Direction and Altitude diagrams are also provided below for intermediate latitudes of 55 North, 35 North, 30 South and the Equator.

The tables allow one to find the highest altitude in the sky which Venus attains for any given latitude during the 2021-22 evening apparition, and in which direction it is seen. For example, observers situated at latitude 30 North will find the planet highest in the sky (at 30 minutes after sunset) in late November 2021, when it is seen at an altitude of 24 towards the South-west. The duration column shows that the planet is then above the horizon for almost 3 hours after sunset.

Northern Hemisphere Latitudes

Table showing direction & altitude (30 minutes after local sunset) and visible duration of Venus for Northern hemisphere latitudes for the 2021-22 evening apparition (Copyright Martin J Powell 2021)

Direction & Altitude (30 minutes after local sunset) and Visibility Duration of Venus for Northern hemisphere latitudes and the Equator for the evening apparition of 2021-22. To find your latitude, visit the Heavens Above website, select your country and enter the name of your nearest town or city in the search box.

The table column headings are as follows:

    Dir = compass direction of Venus,

    Alt = angular altitude (elevation) of Venus (degrees above the horizon; a negative value of Alt means Venus is below the horizon). Altitudes are accurate to within 1.

    Dur = the approximate visibility duration of Venus after local sunset (in hrs:mins). An italicised duration means that Venus is seen under twilight conditions through to its setting, i.e. it is not seen against a truly dark sky (twilight in this case refers to nautical twilight, which ends when the Sun is more than 12 below the horizon). Durations are accurate to within 5 minutes.

Note that the directions and altitudes refer to the planet's position at 30 minutes after local sunset. To find the time of local sunset at your own location, select your country/town from the drop-down menu at the TimeandDate.com website. The approximate time at which Venus sets can be found by adding the visibility duration on a particular date (column Dur) to the time of local sunset on the same date. To find the direction in which Venus sets on any given date for a particular latitude, note down the constellation in which the planet is located on the required date (column headed Con) then find its setting direction for your latitude in the Rise-Set direction table.

Southern Hemisphere Latitudes

Table showing direction & altitude (30 minutes after local sunset) and visible duration of Venus for Southern hemisphere latitudes for the 2021-22 evening apparition (Copyright Martin J Powell 2021)

Direction & Altitude (30 minutes after local sunset) and Visibility Duration of Venus for Southern hemisphere latitudes and the Equator for the evening apparition of 2021-22. The column headings are described under the Northern hemisphere table above.

^ Back to Top of Page

 

Direction & Altitude Diagrams (Horizon Diagrams) for the 2021-22 Evening Apparition

The following diagrams show an observer's Western horizon (from due South to due North) for latitudes of 55 North (a high-Northern latitude), 35 North (mid-Northern), the Equator and 30 South (mid-Southern). The path of Venus is plotted in the sky at 30 minutes after local sunset throughout the 2021-22 evening apparition with the planet's direction and altitude marked along the horizontal and vertical axes, respectively. Essentially, these diagrams show the same information as in the above look-up tables, but in an illustrative format, for the Equator and three intermediate latitudes.

For higher accuracy, the azimuth (the bearing measured clockwise from True North) is also shown along the direction axis. For each of the latitudes shown, the direction and altitude of Venus after sunset can be estimated for any part of the 2021-22 evening apparition by positioning your pointing device over each image, when an overlay grid will appear, marked at 10 intervals; the values can then be read off accordingly.

 

Path of Venus in the evening sky during 2021-22, seen from latitude 55 North (Copyright Martin J Powell 2011)

The Path of Venus in the Evening Sky (plotted for 30 mins after sunset) during 2021-22 for an observer at latitude 55 North.

Path of Venus in the evening sky during 2021-22, seen from latitude 35 North (Copyright Martin J Powell 2011)

The Path of Venus in the Evening Sky (plotted for 30 mins after sunset) during 2021-22 for an observer at latitude 35 North.

Path of Venus in the evening sky during 2021-22, seen from the Equator (Copyright Martin J Powell 2011)

The Path of Venus in the Evening Sky (plotted for 30 mins after sunset) during 2021-22 for an observer at the Equator (latitude 0).

Path of Venus in the evening sky during 2021-22, seen from latitude 30 South (Copyright Martin J Powell 2011)

The Path of Venus in the Evening Sky (plotted for 30 mins after sunset) during 2021-22 for an observer at latitude 30 South.

Paths of Venus in the Evening Sky (30 mins after sunset) for the 2021-22 evening apparition, as seen by observers at latitudes 55 North, 35 North, the Equator and 30 South. The letters GE refer to the planet's greatest elongation (followed in brackets by its angular distance from the Sun) and the letters GB refer to the planet's greatest brilliance (followed in brackets by its apparent magnitude).

The azimuth (Az, along the bottom of each diagram) is the bearing measured clockwise from True North (where 0 = North, 90 = East, 180 = South, etc.). The altitude (Alt) is the angle measured vertically from the local horizon (the horizon itself is 0). Azimuth and altitude are co-ordinates which are used for high-accuracy tracking of objects across the sky; in astronomy it is mainly used for setting telescopes which are fitted with altazimuth mounts.

To determine the planet's position in the sky with higher accuracy, move your pointing device over each image (or click on the picture) to see an overlay grid marked at 10 intervals in azimuth and altitude (the dates are removed for clarity). For example, at latitude 30 South on September 1st 2021, at 30 minutes after sunset, Venus is found at azimuth = 279 (i.e. in the West) and altitude = 31. Azimuths and altitudes are accurate to 1.

Although the dates indicated in the above diagrams refer specifically to the period 2021-22, Venus has an 8-year cycle of apparitions such that its position in the evening sky in 2021-22 will repeat very closely in the evening sky of 2029-30. The writer refers to this particular evening apparition as Apparition D; for more details, see the accompanying article describing The Venus 8-year Cycle.

 ^ Back to Top of Page


Naked-eye Venus: Apparitions, Conjunctions and Elongations

The Naked-eye appearance of Venus

Naked Eye Planet Index

Planetary Movements through the Zodiac

Mercury

Venus 

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto


Credits


Copyright  Martin J Powell  April 2021


Site hosted by  TSOHost

------WebKitFormBoundaryxBHTTDJWtoYHYwlm Content-Disposition: form-data; name="overwrite" 0